
COMMUNICATION-MINIMIZING 2D CONVOLUTION IN GPU REGISTERS

Forrest N. Iandola, David Sheffield, Michael Anderson,
Phitchaya Mangpo Phothilimthana, and Kurt Keutzer

Parallel Computing Laboratory (ParLab)
University of California, Berkeley, CA, USA

{forresti, dsheffie, mjanders, mangpo, keutzer}@eecs.berkeley.edu

ABSTRACT

2D image convolution is ubiquitous in image processing and computer
vision problems such as feature extraction. Exploiting parallelism is
a common strategy for accelerating convolution. Parallel processors
keep getting faster, but algorithms such as image convolution remain
memory bounded on parallel processors such as GPUs. Therefore, re-
ducing memory communication is fundamental to accelerating image
convolution. To reduce memory communication, we reorganize the
convolution algorithm to prefetch image regions to register, and we do
more work per thread with fewer threads. To enable portability to fu-
ture architectures, we implement a convolution autotuner that sweeps
the design space of memory layouts and loop unrolling configurations.
We focus on convolution with small filters (2x2–7x7), but our tech-
niques can be extended to larger filter sizes. Depending on filter size,
our speedups on two NVIDIA architectures range from 1.2x to 4.5x
over state-of-the-art GPU libraries.

Index Terms— Convolution, parallel, GPU, autotuning

1. INTRODUCTION
Convolution is a key component in most algorithms for feature extrac-
tion, image segmentation, object tracking, and object recognition. In a
recent “periodic table” of the fifteen most recurring computational pat-
terns in image processing and computer vision literature, convolution
ranked as the most ubiquitous, followed by histogram accumulation,
vector distance, and quadratic optimization [1]. Our work focuses on
image convolution with small nonseperable filters (2x2 to 7x7), which
are extremely common for edge detection, feature extraction [2], and
difference of gaussians [3].

The computer architecture community has developed many-
threaded processors that offer tremendous boosts in peak FLOP/s
over traditional single-core CPUs. However, improvements to mem-
ory bandwidth and latency have lagged behind the improvements to
the processors themselves. As a result, the performance of convolution
and other algorithms with low computational complexity tend to be
limited by the memory bandwidth, much like trying to drink a thick
milkshake through a narrow straw.

To recap, the predicament is that parallel processors keep getting
faster, but algorithms like convolution remain memory-bounded on
these architectures. The solution to this is to redesign algorithms with

Research supported by Microsoft (Award #024263) and Intel (Award
#024894) funding and by matching funding by U.C. Discovery (Award
#DIG07-10227). Additional support comes from Par Lab affiliates Nokia,
NVIDIA, Oracle, and Samsung. The first author is funded by the US DoD ND-
SEG Fellowship. Research also funded by DARPA Award Number HR0011-
12-2-0016. Approved for public release; distribution is unlimited. The content
of this paper does not necessarily reflect the position or the policy of the US
government and no official endorsement should be inferred.

the goal of minimizing communication among off-chip memory, on-
chip shared memory, and registers. On a variety of parallel architec-
tures, reducing and optimizing memory- and interprocess communica-
tion has accelerated memory-bounded problems in linear algebra [4]
and graph traversal [5] by as much as an order of magnitude. In this
paper, we accelerate 2D convolution by reducing communication with
off-chip memory, while also avoiding long strides in the access pattern.
For 3x3 – 7x7 convolution kernels, we produce a speedups of 1.2x-
3.4x on the NVIDIA Fermi architecture, and 1.3x-4.5x on NVIDIA
Kepler. These speedups are not with respect to CPU implementations;
instead these are speedups over GPU implementations in the Array-
Fire [6] GPU library, which are faster than the NVIDIA-provided con-
volution routines. Further, for 2x2 and 3x3 filters, our communication-
optimized convolution algorithm achieves peak memory bandwidth on
NVIDIA Kepler GPUs, and we achieve within a factor of 2 of peak
bandwidth on NVIDIA Fermi GPUs.

A common objection to performing algorithms like convolution
on the GPU is that copying data from the CPU to GPU can be quite
expensive. However, our work is targeted toward image processing
pipelines for applications like feature extraction. These pipelines per-
form a long sequence of image transformations on the GPU, and this
more than offsets the CPU-GPU copy time.

Recent work on domain-specific languages such as PetaBricks [7]
and Halide [8] has sought to automate, simplify, or autotune image
processing algorithms for various parallel architectures. Our work also
employs autotuning, but our foremost goal is to produce the fastest
possible image convolution implementation for small filter sizes on
modern GPUs. Toward this goal, we explore several performance
strategies that these DSLs do not explore, such as prefetching image
regions to register and varying the amount of work performed by each
thread. Ultimately, our work will inform designers of DSLs and li-
braries about design parameters that can improve convolution perfor-
mance.

The rest of this paper is organized as follows. In Section 2, we
review the relevant aspects of the NVIDIA Fermi and Kepler archi-
tectures, and we benchmark these architectures’ memory hierarchies.
Section 3 describes how we redesign convolution to reduce the time
spent waiting for memory accesses. In Section 4, we implement an
autotuner that explores the 2D convolution design space to minimize
memory communication time on two GPU architectures. We bench-
mark our work against NVIDIA-provided image processing libraries
and other related literature in Section 5, and we conclude in Section 6.

2. ARCHITECTURE

2.1. GPU Architecture Overview
NVIDIA Fermi and Kepler GPUs are comprised of eight to fifteen
streaming multiprocessors (SMs), which each execute up to ∼1000

concurrent threads.1 Users’ GPU-side code is typically implemented
in the CUDA or OpenCL language extensions to C/C++. As in a typi-
cal Intel CPU, the NVIDIA GPUs have off-chip DRAM called global
memory which is amplified by system-managed L1 and L2 caches.
Also like a typical CPU, NVIDIA GPUs have on-chip registers, and
each thread has its own register address space that is not accessible
to other threads. For the C2050 (Fermi GF100) and GTX680 (Kepler
GK104) GPUs that we use in this paper, each thread is allocated a
maximum of 63 registers (Table 1), and the registers offer sufficient
bandwidth to saturate the arithmetic or floating-point units. NVIDIA’s
recent K20 (Kepler GK110) can allocate up to 255 registers per thread.
Each SM also has a small read-only constant memory, which is as fast
as the registers. Unlike most CPUs, the NVIDIA GPUs also have a
user-managed fast read-only pipeline to global memory called the tex-
ture cache (texcache), as well as a user-managed on-chip cache called
shared memory (shmem). Shared memory address spaces are common
within each thread block, but not globally across the GPU.

In Table 1, notice that the on-chip memory is quite limited. If an
implementation uses a large number of registers per thread, then fewer
threads can run concurrently. In other words, when each thread uses a
larger portion of the register space, occupancy goes down.

Table 1. NVIDIA Memory Space Per Streaming Multiprocessor
(SM) [9] for C2050 (Fermi) and GTX680 (Kepler).

Max 4KB Regis-
ters Per Thread

Registers
Per SM

Shmem
Per SM

Texcache
Per SM

C2050 63 128KB 48KB 12KB
GTX680 63 256KB 48KB 48KB

K20 255 256KB 48KB 48KB

Data is persistent in the off-chip memory (global memory and the
texture cache), but the on-chip memory (register and shared memory)
contents are not guaranteed to persist beyond the lifetime of a thread.
As a result, it’s necessary to store data (e.g. images) in the off-chip
memory, and to load this data to registers when performing compu-
tations such as convolution. We spend the remainder of this section
discussing and benchmarking the NVIDIA memory hierarchies, with
the goal of informing convolution algorithm design decisions later in
the paper.

2.2. Benchmarking the Memory Hierarchy
We now turn to benchmarking the key properties of the NVIDIA Fermi
and Kepler memory hierarchy. In Table 2, we empirically benchmark
the bandwidth of the global memory and shared memory, again using
benchmarks described in [10].2 Our global memory bandwidth results
are for memory accesses with unit stride–adjacent threads access adja-
cent global memory addresses. Longer strides reduce the usable mem-
ory bandwidth, because the hardware coalescers are optimized for unit
stride. We direct the interested reader to [11] for a discussion of strides
and coalescing in an earlier generation of NVIDIA hardware.

Notice in Table 2 that the newer GTX680 has slightly less shared
memory bandwidth than the C2050. This is in part due to the fact that
the GTX680 has fewer streaming multiprocessors than the C2050. We
also attempted to benchmark the texture cache, but our microbench-
marking experiments did not come close to attaining the theoretical
texture cache fill rate. So, Table 2 reports the theoretical texture cache
fill rate reported by NVIDIA [12]. A key point about the texture cache
is that Kepler’s fill rate is 2.6x greater than Fermi’s.

1512 threads per SM on Fermi, and 1536 threads per SM on Kepler.
2Given this paper’s space limitations, memory bandwidth is our main bench-

mark. Memory latency is also a useful parameter. We suggest [10] for data and
benchmark implementations for NVIDIA memory latency.

Table 2. NVIDIA Memory Bandwidth – Global Memory, Texture
Cache, Shared Memory on C2050 (Fermi) and GTX680 (Kepler).

Measured
Global
Bandwidth

Theoretical
Texcache
Fill-rate [12]

Measured
Shmem
Bandwidth
(full GPU)

C2050 90.4 GB/s 49.4 Gtexels/s 931 GB/s
GTX680 123GB/s 129 Gtexels/s 893 GB/s

3. COMMUNICATION-MINIMIZING CONVOLUTION
IMPLEMENTATION

In the early days of CUDA, NVIDIA advocated storing data (e.g.
images) in global memory, then loading this data to shared memory
(much like loading to cache on a CPU) for computation. However,
Volkov and Demmel showed that higher performance can be obtained
by unrolling loops and prefetching data up to registers instead of work-
ing out of shared memory. As a result, register prefetching and loop
unrolling has become a common practice for linear algebra problems
like matrix-matrix multiplication [13]. The key intuition is that, since
global and and even shared memory communication is expensive,
prefetching and unrolling can increase in-register data reuse. We now
discuss our strategy for implementing convolution, where our goal is
to minimize the time spent communicating with the caches and off-chip
memory.

Our algorithm works as follows. Each thread begins by prefetch-
ing a region of the image from off-chip memory into its registers.
Prefetching gives the compiler more flexibility to do instruction-level
parallelism (ILP) and to overlap communication with computation.
For example, when using a 3x3 convolution filter, we might prefetch
a 4x4 region of the image into registers. Then, using a user-provided
convolution filter that we store in the constant memory, we compute
a region of output pixels. Finally, we write the output pixels back to
off-chip memory. For the example with a 3x3 filter and 4x4 region in
registers, each thread would produce four output pixels (right side of
Figure 1). We use the term loop unrolling to describe implementations
that produce more than one output pixel per thread. Loop unrolling
reduces the total number of requests for data in off-chip memory, and
it can further increase ILP.

Input Image
(in global memory)

Image region
(in a thread’s registers)

Filter (in on-chip
constant memory)

Output convolved image
(in global memory)

Convolved pixels

1 output pixel per thread 4 output pixels per thread

Fig. 1. Loop unrolling: More work per thread. Left: Typical approach,
one output pixel per thread. Right: Our optimal implementations pro-
duce multiple output pixels per thread.

A slight modification to this approach is to first copy a large image
region to each thread block’s shared memory, then copy from shared
memory to registers. Using shared memory allows for cooperative
loading: adjacent threads can load adjacent pixels from off-chip to
shared memory, which maximizes coalescing even in implementations

with unrolled loops. A trade-off is that we pay bandwidth and latency
penalties for one set of loads from off-chip memory, plus two sets of
accesses to store and load in shared memory.

4. AUTOTUNING
We now turn to exploring the design space of places to store the image
in off-chip memory (texture cache or global memory), the amount of
work to do per thread (loop unrolling), and whether or not to prefetch
data to registers. We also evaluate the impact of first fetching an im-
age region to shared memory, then distributing the pixels from shared
memory to registers. Finally, hard-coded loop bounds allow the com-
piler more freedom to add further performance improvements, so our
autotuner produces a broad range of hard-coded implementations in
the convolution design space.

We show our autotuner’s findings for 3x3 filters on NVIDIA
Fermi in Figure 2 and on Kepler in Figure 3. Targeting high-resolution
surveillance cameras such as the 9216x9216 CCD595 from Fairchild
Imaging [14], we use 9216x9216 1-channel floating-point images in
Figures 2–5. Bear in mind that convolution’s computation time scales
linearly with the number of pixels. Therefore, the performance stratifi-
cations in these figures generalize to images that are sufficiently large
to saturate the GPU–approximately 640x480 or larger for our unrolled
implementations.

Observe in Figures 2 and 3 that the unrolled (4 or more outputs
per thread) global→register implementations produce similar perfor-
mance regardless of the amount by which we unroll the loop. Since
more unrolling should lead to more ILP and fewer memory accesses,
we might expect performance to continue to improve as we increase
the amount of work per thread. However, more unrolling leads to
longer strides in memory accesses which, as discussed in Section 2.2,
reduces coalescing and thus reduces usable bandwidth. Also, while
more unrolling reduces the number of off-chip memory requests, the
L1 and L2 caches enable data reuse and reduce the penalty for the
redundant memory accesses in overlapping window algorithms like
convolution. Further, more unrolling (e.g. 25 outputs per thread) in-
creases the registers allocated per thread, thus reducing occupancy. In
short, we find that unrolling is important for improving performance,
but factors like register pressure, ILP, occupancy, and strided accesses
balance out so that global→register implementations are not particu-
larly sensitive to the amount by which the loop is unrolled.

Also notice in Figures 2 and 3 that the strategy of loading to
shared memory, then to register actually diminishes performance
slightly. While the shared memory step can reduce the number of
memory accesses and increase coalescing, it also adds a thread syn-
chronization and an extra set of load and store penalties from the
shared memory’s bandwidth and latency. In contrast, loading directly
from global memory to registers exploits the L1 cache and requires
no synchronization. As we discussed in the previous paragraph, the
L1 cache is amenable to the overlapping windows used in convolu-
tion. Tables 3 and 4 show that using shared memory doesn’t improve
performance for convolution with 2x2 – 7x7 filters.

For brevity, we limit the autotuning visualization (Figures 2 and 3)
to 3x3 filters, but we summarize the autotuner’s optimal implementa-
tions in Tables 3 and 4. Tables 3 and 4 also show a comparison between
the optimal autotuned results and our basic “global memory only” that
uses hard-coded loop bounds but does not prefetch to register. Out of
the existing 2D convolution implementations that we will benchmark
in Section 5, ArrayFire [6] is the provides the fastest implementation
(out of the implementations that provide the full 2x2 – 7x7 range).
With this in mind, we also provide speedup numbers with respect to
ArrayFire in Tables 3 and 4.

In our experiments, we define the bandwidth bound as the amount

 0.000

 0.005

 0.010

 0.015

 0.020

 0.025

 0.030

 0.035

 0.040

1 4 9 16 25

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Number of output pixels per thread

Communication-Minimizing Convolution on NVIDIA C2050
 3x3 Filters, 9216x9216 Images

Global Memory -> Shared Memory -> Register
Texture Cache -> Shared Memory -> Register

Global Memory -> Register
Texture Cache -> Register

Global Memory Only
Texture Cache Only

Bandwidth Bound

Fig. 2. Convolution performance with several memory paths and loop
unrolling configurations on C2050 (Fermi GF100). 3x3 convolution
filters.

 0.000

 0.005

 0.010

 0.015

 0.020

 0.025

 0.030

1 4 9 16 25

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Number of output pixels per thread

Communication-Minimizing Convolution on NVIDIA GTX680
 3x3 Filters, 9216x9216 Images

Global Memory -> Shared Memory -> Register
Texture Cache -> Shared Memory -> Register

Global Memory -> Register
Texture Cache -> Register

Global Memory Only
Texture Cache Only

Bandwidth Bound

Fig. 3. Convolution performance with several memory paths and loop
unrolling configurations on GTX680 (Kepler GK104). 3x3 convolu-
tion filters.

of time to transfer one 9216x9216 image from global memory to reg-
isters and back, not including the overlapping memory accesses that
we use in convolution. In Tables 3 and 4, the “% of BW Bound” col-
umn is calculated as convolutionTime

bandwidthBoundTime
. On Kepler, our convolu-

tion implementations with small filters can exceed the global memory
bandwidth bound by using the texture cache. Notice that our results
are within 2x of the global bandwidth bound for 2x2 and 3x3 filters on
Fermi (Table 3), and within 2x of the global bandwidth bound for 2x2–
5x5 filters on Kepler (Table 4). The GPU allocates a maximum of 63
registers per thread, and each input and output pixel uses one register
in our prefetching implementations, so loop unrolling is quite limited
for the 6x6 and 7x7 filter sizes. However, our prefetching and un-
rolling strategy could be extended to efficiently handle 7x7 and larger
filters. Specifically, we would handle 7x7 and larger filters by having
each thread load the pixels it needs in small blocks, alternating be-
tween loading input pixels and computing a convolved output pixel. In
addition, NVIDIA’s new “Big Kepler” GK110 architecture allocates
up to 255 registers per thread, so we anticipate that this architecture
will be more amenable to unrolling with larger filter sizes.3

3NVIDIA K20 (Kepler GK110) was released in late 2012. We were not able
to obtain a K20 in time for press.

Table 3. Optimal Convolution Implementations – C2050 (Fermi
GF100). Speedups with respect to our simple “global memory only”
implementation and ArrayFire [6].

Filter
Size

Optimal
Layout

Output
Pixels Per
Thread

Speedup
vs. Array-
Fire

Speedup
vs. Global
Only

% of
BW
Bound

2x2 Global→Register 1 1.2x 1.1x 55%
3x3 Global→Register 4 2.0x 1.5x 53%
4x4 Global→Register 16 2.6x 1.6x 40%
5x5 Global→Register 9 3.1x 1.9x 33%
6x6 Global→Register 4 3.4x 2.1x 25%
7x7 Global→Register 1 1.8x 1.0x 9.4%

Table 4. Optimal Convolution Implementations – GTX680 (Kepler
GK104). Speedups with respect to our simple “global memory only”
implementation and ArrayFire [6].

Filter
Size

Optimal
Layout

Output
Pixels
Per
Thread

Speedup
vs.
Array-
Fire

Speedup
vs.
Global
Only

% of
BW
Bound

2x2 Texcache→Register 4 1.7x 1.9x 107%
3x3 Texcache→Register 4 2.2x 3.9x 101%
4x4 Texcache→Register 9 2.4x 6.1x 87%
5x5 Texcache→Register 9 4.5x 8.8x 83%
6x6 Texcache→Register 4 3.5x 7.5x 49%
7x7 Texcache→Register 1 1.3x 2.9x 14%

5. COMPARISON WITH RELATED WORK
Several libraries such as OpenCV [15], NVIDIA Performance Prim-
itives [16], ArrayFire [6], PetaBricks [7], and CUVILib [17]4 pro-
vide GPU implementations of 2D image convolution. Analysis of the
OpenCV source code reveals that OpenCV works directly out of the
texture cache, and it does not use hard-coded loop bounds, although it
does store the convolution filter in on-chip constant memory. NVIDIA
Performance Primitives (NPP) [16] is a closed-source codebase, but
decompilation of NPP binaries using cuobjdump suggests that NPP
does not employ register prefetching or loop unrolling in its 2D con-
volution. PetaBricks is a domain-specific language that allows algo-
rithms to have several different implementations, and it incorporates
autotuning and code generation [7]. PetaBricks was recently extended
to generate and optimize OpenCL code for GPUs and CPUs, and it is
capable of generating 2D convolution code [18]. Convolution can also
be phrased as FFT: ifft(fft(image) * fft(filter)). In
addition to testing ArrayFire’s direct 2D convolution, we use Array-
Fire’s wrapper around NVIDIA cuFFT [19] as a baseline for compar-
ing our direct convolution implementations with FFT-based convolu-
tion.

We now compare our autotuned results with the 2D nonseperable
convolution implementations in the aforementioned image processing
libraries. The “Our Communication-Minimizing Result” line in Fig-
ures 4 and 5 represents the best implementation produced by our au-
totuner, as enumerated in Tables 3 and 4. First, notice that FFT is one
to two orders of magnitude slower than any of our implementations
on both architectures. On Fermi, the NVIDIA Performance Primitives
convolution is 2-3x slower than our naive implementations without
blocking or prefetching, and even slower compared to our autotuned
results. On Kepler, the NPP performance is almost identical to our

4The CUVILib GPU library [17] primarily supports Windows; we were un-
able to get CUVILib’s 2D convolution running on our Linux system.

naive implementations. PetaBricks is the only related work that we
tested that uses hard-coded loop bounds, and as a result it is quite fast.
Note that PetaBricks only supports odd-sized convolution filters. Re-
call that Tables 3 and 4 show our speedups with respect to ArrayFire.
Our speedups are most significant for small kernels, which offer a lot
of flexibility to unroll loops despite the constrained register file size.

 25

 50

 100

 200

 500

 1700

 10

 100

 1000

 10000

2x2 3x3 4x4 5x5 6x6 7x7

C
om

pu
ta

tio
n

tim
e

(m
s)

Convolution filter size

Benchmarking Convolution Algorithms on NVIDIA C2050
 9216x9216 Images

FFT
ArrayFire

PetaBricks without Shared Mem
PetaBricks with Shared Mem

OpenCV GPU
NVIDIA Performance Primitives (NPP)

Our Communication-Minimizing Autotuned Result

Fig. 4. Comparison of our convolution performance with related work
on C2050 (Fermi GF100).

 5

 25

 50

 100

 200

 500

 1

 10

 100

 1000

2x2 3x3 4x4 5x5 6x6 7x7

C
om

pu
ta

tio
n

tim
e

(m
s)

Convolution filter size

Benchmarking Convolution Algorithms on NVIDIA GTX680
 9216x9216 Images

FFT
ArrayFire

PetaBricks without Shared Memory
PetaBricks with Shared Memory

OpenCV GPU
NVIDIA Performance Primitives (NPP)

Our Communication-Minimizing Autotuned Result

Fig. 5. Comparison of our convolution performance with related work
on GTX680 (Kepler GK104).

6. CONCLUSIONS
Convolution with small filter sizes is widely used in edge detection,
and it underpins numerous algorithms for feature extraction. Toward
accelerating all of these problems, we accelerate nonseperable 2D
convolution on NVIDIA GPUs. Convolution is bandwidth bound on
GPUs, so we focus on reducing the time spent performing memory
accesses. We achieve bandwidth bound for 2x2 and 3x3 filters on
NVIDIA Kepler by performing more work per thread and prefetch-
ing to registers. For portable performance in future architectures, we
have implemented an autotuner that explores the design space of 2D
convolution with small filters.

Our approach in this paper has been to optimize memory com-
munication using strategies that do not appear to be implemented in
today’s domain-specific languages (DSLs) and libraries. We plan to
incorporate this paper’s performance optimizations into productivity-
oriented DSLs like Halide or PetaBricks. Further, our study of optimal
register blocking and data movement for 2D convolution will inform

the design of composable, in-register image processing pipelines with
minimal memory communication.

ACKNOWLEDGEMENTS
The authors would like to thank James Demmel, Leonid Oliker, Pavan
Yalamanchili, Yun-Ta Tsai, and Kari Pulli.

7. REFERENCES

[1] Bor-Yiing Su, Parallel Application Library for Object Recogni-
tion, Chapter 3, Ph.D. thesis, University of California, Berkeley,
2012.

[2] Navneet Dalal and Bill Triggs, “Histograms of oriented gradients
for human detection,” in CVPR, 2005.

[3] David G. Lowe, “Distinctive image features from scale-invariant
keypoints,” International Journal of Computer Vision, vol. 60,
no. 2, 2004.

[4] James Demmel, Mark Hoemmen, Marghoob Mohiyuddin, and
Katherine Yelick, “Avoiding communication in sparse matrix
computations,” in IEEE International Parallel Distributed Pro-
cessing Symposium (IPDPS), 2008.

[5] Scott Beamer, Krste Asanovic, and David Patterson, “Direction-
optimizing breadth-first search,” in Supercomputing, 2012.

[6] James Malcolm, Pavan Yalamanchili, Chris McClanahan, Vish-
wanath Venugopalakrishnan, Krunal Patel, and John Melonakos,
“ArrayFire: a GPU acceleration platform,” SPIE Modeling and
Simulation for Defense Systems and Applications, 2012.

[7] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin
Zhao, Alan Edelman, and Saman Amarasinghe, “Petabricks: A
language and compiler for algorithmic choice,” in ACM SIG-
PLAN Conference on Programming Language Design and Im-
plementation (PLDI), 2009.

[8] Jonathan Ragan-Kelley, Andrew Adams, Sylvain Paris, Marc
Levoy, Saman Amarasinghe, and Fredo Durand, “Decoupling
algorithms from schedules for easy optimization of image pro-
cessing pipelines,” in SIGGRAPH, 2012.

[9] “NVIDIA’s next generation CUDA compute architecture: kepler
GK110,” NVIDIA Whitepaper, 2012.

[10] Michael J. Anderson, David Sheffield, and Kurt Keutzer, “A pre-
dictive model for solving small linear algebra problems in GPU
registers,” in IEEE International Parallel Distributed Processing
Symposium (IPDPS), 2012.

[11] Nathan Bell and Michael Garland, “Implementing sparse matrix-
vector multiplication on throughput-oriented processors,” in Su-
percomputing, 2009.

[12] “NVIDIA geforce gtx 680: The fastest, most efficient GPU ever
built,” NVIDIA Whitepaper, 2012.

[13] Vasily Volkov and James W. Demmel, “Benchmarking GPUs to
tune dense linear algebra,” in Supercomputing, 2008.

[14] “Fairchild Imaging CCD595,”
fairchildimaging.com/products/
fpa/ccd/area/ccd 595.htm.

[15] “OpenCV,” opencv.willowgarage.com.

[16] “NVIDIA Performance Primitives (NPP),”
developer.nvidia.com/npp.

[17] Salman Ul Haq, “Cuvilib: GPU accelerated vision & imaging
library,” in GPU Technology Conference (GTC), 2010.

[18] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan
Ragan-Kelley, and Saman Amarasinghe, “Portable perfor-
mance on heterogeneous architectures,” in Architectural Support
for Programming Language and Operating Systems (ASPLOS),
2013.

[19] “cuFFT,” developer.nvidia.com/cufft.

